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A low complexity method for signal subspace fitting is proposed. The

novel signal subspace used in the method is spanned by the pre-filters

of the multi-stage Wiener filter. Studies and simulations have shown

that, when the incident signals are coherent, the new method achieves

comparable results with the weighted subspace fitting estimator but

requires much lower computational cost.

Introduction: It is shown in [1] that the weighted subspace fitting

(WSF) method, a minimising technique, always outperforms the

deterministic maximum likelihood (DML) estimator for the problem

of the direction-of-arrival (DOA) estimation. However, the WSF

estimator is still subject to high computational cost, partially attribu-

table to the estimation of the signal subspace. In this Letter, the

relation between the multi-stage Wiener filter (MSWF) [2] and the

signal subspace is found, therefore leading to a low complexity

method for signal subspace fitting (SSF). The new method does not

require an estimate of the covariance matrix or its eigen-decomposi-

tion, thereby implying very low computational complexity. Moreover,

since the new signal subspace can be spanned only by D matched

filters of the MSWF, its dimension may be much less than the number

of signals. Simulations will show that, when the incident signals are

coherent, the novel estimator yields approximately consistent results

with the WSF method.

Problem formulation: Let us consider a uniform linear array (ULA)

of M isotropic sensors that receive P(P <M) narrowband signals

coming from directions {y1, y2, . . . yP}. The data, which are corrupted

by additive noise, received by the array at the kth snapshot can be

written as

xðkÞ ¼ ½aðy1Þ; aðy2Þ; . . . ; aðyPÞ�sðkÞ þ nðkÞ

¼ AðyÞsðkÞ þ nðkÞ k ¼ 0; 1; . . . ;N � 1 ð1Þ

where s(k)2CP�1, n(k)2CM�1, A(y) CM�P are the signal vector,

the noise vector and the M�P steering matrix, respectively. N denotes

the number of snapshots. The background noise uncorrelated with the

signals is assumed to be a stationary Gaussian white random process,

which is also spatially white and circularly symmetric. Therefore, the

covariance matrix can be expressed as

Rx ¼ E½xðkÞxH ðkÞ� ¼ ARsA
H þ s2nIM�M ð2Þ

where Rs and sn
2 are the signal covariance matrix and the noise

variance, respectively. Computing the eigenvectors associated with

the covariance matrix Rx yields

Rx ¼ VsLsV
H
s þ s2nVnV

H
n ð3Þ

The number of the columns of Vs is generally equal to the rank P
0 of Rs.

Thus the columns of Vs span the P 0-dimensional subspace of A(y).
Combining (2) and (3) results in

Vs ¼ AðyÞT ð4Þ

where T2CP�P 0

is the full-rank matrix. Equation (4) forms a basis for

the WSF method.

Low complexity method for signal subspace fitting: The MSWF

recently presented by Goldstein et al. [2] can efficiently solve the

Wiener-Hopf equation Rxw¼ rxd in the minimum mean square error

(MMSE) sense. The MSWF algorithm [3] based on the data-level

lattice structure is shown as follows:

Initialisation: d0(k) and x0(k)¼ x(k).

Forward recursion: For i¼ 1; 2, . . . ,M:

hi ¼ E½xðkÞi�1d
�
i�1ðkÞ�=kE½xðkÞi�1d

�
i�1ðkÞ�k2;

diðkÞ ¼ hHi xi�1ðkÞ;

xiðkÞ ¼ xi�1ðkÞ � hidiðkÞ:

Backward recursion: For i¼M, M� 1, . . . ,1 with eM(k)¼ dM(k):

wi ¼ E½di�1ðkÞe
�
i ðkÞ�=E½jeiðkÞj

2�;

ei�1ðkÞ ¼ di�1ðkÞ � w�
i eiðkÞ:

In the algorithm above, d0 (k) is the reference signal that can be

obtained from the spreading codes of users or the training sequences.

The pre-filter matrix TD¼ [h1, h2, . . . , hD] (D�P) is acquired by

truncating the MSWF at the Dth stage to reduce complexity. Notice that

all the matched filters h1, h2, . . . , hD are orthogonal. It follows from [4]

that the rank D MSWF is equivalent to solving the Wiener-Hopf

equation in the D-dimensional Krylov subspace K(D)
¼ span(rx0d0;

Rx0
rx0d0, . . . , Rx0

(D�1)rx0d0), i.e. h1, h2, . . . , hD form an orthogonal basis

for the K(D). It readily follows that there exists a full-rank matrix

K2CD�D such that

TD ¼ ½rx0d0 Rx0
rx0d0 � � � RðD�1Þ

x0
rx0d0 �K ð5Þ

According to (3) and with Vs
HVs¼ IP0�P 0 and Vn

HVn¼

I(M�P0)� (M�P0) in mind, we have

RðdÞ
x0

¼ VsL
ðdÞ
s VH

s þ s2dn VnV
H
n d ¼ 1; 2; . . . ;D� 1 ð6Þ

Since h1¼ rx0d0=krx0d0k
2 is contained in the true signal subspace, it

follows that Vn
H rx0d0¼ 0. Considering VsVs

H
þVnVn

H
¼ IM�M and (4),

(5) can be formulated as

TD ¼ ½VsV
H
s rx0d0 ;VsLsV

H
s rx0d0 ; . . . ;VsL

ðD�1Þ
s VH

s rx0d0 �K

¼ Vs½V
H
s rx0d0 ;LsV

H
s rx0d0 ; . . . ;L

ðD�1Þ
s VH

s rx0d0 �K

¼ AT½VH
s rx0d0 ;LsV

H
s rx0d0 ; . . . ;L

ðD�1Þ
s VH

s rx0d0 �K

¼ AF ð7Þ

where F¼T[Vs
H rx0d0, LsVs

H rx0d0, . . . ;Ls
(D�1) Vs

H rx0d0] K2CP�D. This

shows that TD also spans the signal subspace. Therefore, the relation in

(7) forms a new basis for signal subspace fitting. Thus a novel criterion

function is given by

fŷy; F̂Fg ¼ argmin
yF

kT̂TD � AðyÞFk2F ð8Þ

where T̂zD is the estimate of TD. For the fixed unknown parameter

A(y), the solution for the linear parameter F is F̂¼ (AHA)�1AHTD̂.

Substituting it to (8) yields the SSF criterion function:

ŷy ¼ argmin
y

kP?
AT̂TDk

2
F

¼ argmin
y
ftr½P?

AT̂TDT̂T
H
D �g ð9Þ

The novel SSF method is different from the WSF based on the eigen-

decomposition though they are very similar formally. It can be proved

that the columns of TD can span a compressed signal subspace the

dimension of which may be much less than the number of signals.

Hence accurate knowledge of the number of signals is unnecessary in

the process of estimating the constringent signal subspace.

Computational cost consideration: It is noticeable that the MSWF

algorithm above avoids the formation of blocking matrices, and all the

operations of the MSWF merely involve complex vector-vector

products, thereby implying computational complexity O(M) per snap-

shot for each matched filter. Thus, to estimate the signal subspace of

rank D, the computational burden of the proposed method is only of

O(D M N ) flops in the training model. However, the WSF technique

resorts to the estimation of the covariance matrix and its eigen-

decomposition, which requires O(M2NþM3) flops.

Numerical example 1: The array herein is assumed to be a ULAwith

32 isotropic sensors, the spacings of which equal half-wavelength.

Suppose that there are three signals impinging upon the array from the

same signal source. The first is a direct-path signal and the others

are the scaled and delayed replicas of the first signal that represent the

multipaths or the ‘smart’ jammers. The propagation constants are {1,

�0.8þ j0.6,�0.4þ j0.7}. The true DOAs are assumed to be {�40, 00,

50}. The number of snapshots is 64. The root-mean-squared errors

(RMSEs) of signals against signal-to-noise ratio (SNR) for the rank of

the MSWF equal to 1 are shown in Fig. 1. It is easily seen that the
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proposed method outperforms the WSF estimator when SNR is less

than �5 dB. When SNR increases, the RMSEs of the two methods

approach to the Cramér-Rao bound (CRB).

Fig. 1 RMSEs of signals against SNR for fixed D¼ 1

Fig. 2 RMSEs of signals against number of snapshots for fixed D¼ 1

Numerical example 2: The number of sensors is assumed to be 16

and the signals are the same as those of example 1. For the fixed SNR

equal to 15 dB, Fig. 2 illustrates that the RMSEs of the proposed

method coincide with those of the WSF as the number of snapshots

increases, therefore indicating that the proposed technique yields

comparable resolution and precision with the WSF method in the

case of coherent signals.

Conclusion: The proposed technique does not compute the covar-

iance matrix or its eigenvectors, and does not require the backward

recursion of the MSWF. Thus, its computation load is significantly

reduced. Moreover, it still can provide comparable performances with

the WSF when the dimension of the compressed signal subspace is

less than the number of signals.
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